试题
题目:
已知(x-2)
2
+|y+1|=0,则x=
2
2
,y=
-1
-1
.
答案
2
-1
解:∵(x-2)
2
+|y+1|=0,
∴x-2=0,y+1=0,
∴x=2,y=-1.
考点梳理
考点
分析
点评
非负数的性质:偶次方;非负数的性质:绝对值.
本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出方程,求出x、y的值即可.
本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.
找相似题
(2012·黑龙江)若(a-2)
2
+|b-1|=0,则(b-a)
2012
的值是( )
若|x+2|+(y-1)
2
=0,则x+y=
-1
-1
.
已知:|x-1999|+(x-1997)
2
=1999-x,则x=
1997
1997
.
若|x-2|+(y-3)
2
=0,则y
x
=
9
9
.
若|a-1|+(b+3)
2
=0,则
b
a
+1的值是
-2
-2
.