试题
题目:
若|a+2|+(b-3)
2
=0,则a
b
=
-8
-8
.
答案
-8
解:∵|a+2|+(b-3)
2
=0,
∴a+2=0,b-3=0,即a=-2,b=3.
所以a
b
=(-2)
3
=-8.
考点梳理
考点
分析
点评
非负数的性质:偶次方;非负数的性质:绝对值.
根据非负数的性质可求出a、b的值,然后将它们代入a
b
中求解即可.
初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
找相似题
(2012·黑龙江)若(a-2)
2
+|b-1|=0,则(b-a)
2012
的值是( )
若|x+2|+(y-1)
2
=0,则x+y=
-1
-1
.
已知:|x-1999|+(x-1997)
2
=1999-x,则x=
1997
1997
.
若|x-2|+(y-3)
2
=0,则y
x
=
9
9
.
若|a-1|+(b+3)
2
=0,则
b
a
+1的值是
-2
-2
.