试题
题目:
已知|x+1|+(y-3)
2
=0,那么(x+y)
2
的值是
4
4
.
答案
4
解:∵|x+1|+(y-3)
2
=0,
∴x+1=0,y-3=0,解得x=-1,y=3,
∴(-1+3)
2
=4.
故答案为:4.
考点梳理
考点
分析
点评
非负数的性质:偶次方;非负数的性质:绝对值.
先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.
本题考查的是非负数的性质,熟知当几非负数相加和为0时,则其中的每一项都必须等于0是解答此题的关键.
找相似题
(2012·黑龙江)若(a-2)
2
+|b-1|=0,则(b-a)
2012
的值是( )
若|x+2|+(y-1)
2
=0,则x+y=
-1
-1
.
已知:|x-1999|+(x-1997)
2
=1999-x,则x=
1997
1997
.
若|x-2|+(y-3)
2
=0,则y
x
=
9
9
.
若|a-1|+(b+3)
2
=0,则
b
a
+1的值是
-2
-2
.