试题
题目:
如图,∠AOP=∠BOP=40°,CP∥OB,CP=4,则OC=( )
A.2
B.3
C.4
D.5
答案
C
解:∵CP∥OB,
∴∠OPC=∠BOP,
∴∠AOP=∠OPC,
∵∠AOP=∠BOP,
∴∠AOP=∠OPC,
∴OC=CP,
∵CP=4,
∴OC=4.
故选C.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;平行线的性质.
根据两直线平行,内错角相等可得∠OPC=∠BOP,然后得到∠AOP=∠OPC,再根据等角对等边的性质可得OC=CP,从而得解.
本题考查了等腰三角形的等角对等边的性质,两直线平行,内错角相等的性质,熟记性质是解题的关键.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.