试题

题目:
青果学院在△ABC中,AB=AC,两底角平分线分别与AB、AC交于点D、E,图中等腰三角形的个数是(  )



答案
A
青果学院解:如图,设DC与BE的交点为F,
∵AB=AC,
∴△ABC是等腰三角形;
∴∠ABC=∠ACB
由AB、AC分别为∠ABC、∠ACB的角平分线得,
∠EBC=
1
2
∠ABC,∠DCB=
1
2
∠ACB
∴∠EBC=∠ACB
∴△BFC是等腰三角形,
由题设中的条件不足以判断其他三角形的形状,
综上,由题设只能得出△ABC、△BFC为等腰三角形,
故选A.
考点梳理
等腰三角形的判定与性质.
根据等腰三角形的判定定理(在同一三角形中,有两条边相等的三角形是等腰三角形;在同一三角形中,有两个角相等的三角形是等腰三角形)来证明图中的等腰三角形.
本题主要考查了等腰三角形的判定:在同一三角形中,有两条边相等的三角形是等腰三角形;在同一三角形中,有两个角相等的三角形是等腰三角形.
证明题.
找相似题