试题
题目:
如图,AB=AC,BD平分∠ABC,且∠C=2∠A,则图中等腰三角形共有
3
3
个.
答案
3
解:∵AB=AC,
∴∠ABC=∠C,
∵∠C=2∠A,
∴∠B=2∠A,
∵BD平分∠ABC,
∴∠ABC=2∠ABD=2∠DBC,
∴∠A=∠ABD,
∴AD=BD,
∴△ABD是等腰三角形,
∵∠BDC=∠A+∠ABD=2∠A,
∵∠C=2∠A,
∴∠C=∠BDC,
∴BD=BC,
∴△BDC是等腰三角形,
∵△ABC是等腰三角形,
即等腰三角形有3个,
故答案为:3.
考点梳理
考点
分析
点评
等腰三角形的判定与性质.
根据等腰三角形性质推出∠ABC=∠C=2∠A,根据角平分线定义求出∠ABC=2∠ABD,推出∠A=∠ABD,求出∠BDC=∠C=2∠A,得出△ABD和△BDC都是等腰三角形,即可得出答案.
本题考查了等腰三角形的性质和判定,角平分线定义,三角形外角性质的应用,主要考查学生的推理能力.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.