试题
题目:
如图,在△ABC中,AB=AC,中线BD、CE相交于点O.求证:OB=OC.
答案
证明:∵△ABC的两条中线BD、CE,
∴CD=
1
2
AC,BE=
1
2
AB,
∵AB=AC,
∴CD=BE,∠EBC=∠DCB,
在△EBC和△DCB中
BE=CD
∠EBC=∠DCB
BC=BC
∴△EBC≌△DCB(SAS),
∴∠DBC=∠ECB,
∴OB=OC.
证明:∵△ABC的两条中线BD、CE,
∴CD=
1
2
AC,BE=
1
2
AB,
∵AB=AC,
∴CD=BE,∠EBC=∠DCB,
在△EBC和△DCB中
BE=CD
∠EBC=∠DCB
BC=BC
∴△EBC≌△DCB(SAS),
∴∠DBC=∠ECB,
∴OB=OC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定与性质.
求出CD=BE,∠EBC=∠DCB,证△EBC≌△DCB,推出∠DBC=∠ECB即可.
本题考查了全等三角形的性质和判定,等腰三角形的性质和判定的应用,关键是推出△EBC≌△DCB,注意:等角对等边.
证明题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.