试题
题目:
如图,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分线.CD⊥AE,与AE的延长线交于D点,与AB的延长线交于F点.
求证:CD=
1
2
AE.
答案
证明:∵CD⊥AE,
∴∠ADC=90°,
∴∠4+∠3=90°,
∵∠ABC=90°,
∴∠1+∠2=90°,
∵∠3=∠2,
∴∠1=∠4,
在△CBF和△ABE中,
∠1=∠4
AB=CB
∠ABE=∠CBF=90°
,
∴△CBF≌△ABE(ASA),
∴CF=AE,
∵AE是∠BAC的角平分线,CD⊥AE,
∴∠1=∠CAD,∠ADC=∠ADF=90°,
在△ACD和△AFD中,
∠CAD=∠1
AD=AD
∠ADC=∠ADF=90°
,
∴△ACD≌△AFD(ASA),
∴CD=DF=
1
2
CF,
∵AE=CF,
∴CD=
1
2
AE.
证明:∵CD⊥AE,
∴∠ADC=90°,
∴∠4+∠3=90°,
∵∠ABC=90°,
∴∠1+∠2=90°,
∵∠3=∠2,
∴∠1=∠4,
在△CBF和△ABE中,
∠1=∠4
AB=CB
∠ABE=∠CBF=90°
,
∴△CBF≌△ABE(ASA),
∴CF=AE,
∵AE是∠BAC的角平分线,CD⊥AE,
∴∠1=∠CAD,∠ADC=∠ADF=90°,
在△ACD和△AFD中,
∠CAD=∠1
AD=AD
∠ADC=∠ADF=90°
,
∴△ACD≌△AFD(ASA),
∴CD=DF=
1
2
CF,
∵AE=CF,
∴CD=
1
2
AE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定与性质.
首先证明△CBF≌△ABE可得CF=AE,再证明△ACD≌△AFD可得CD=DF=
1
2
CF,再进行等量代换可得结论CD=
1
2
AE.
此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形全等的判定方法:SSS、SAS、AAS、ASA.证明三角形全等必须有边相等的条件.
证明题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.