试题
题目:
如图,在△ABC中,∠B=∠C=30°,D是BC的中点,连接AD,求∠BAD与∠ADC的度数.
答案
解:∵△ABC中,∠B=∠C=30°,
∴AB=AC,
∵D是BC的中点,
∴AD⊥BC,
∴∠ADC=90°∠ADB=90°,
∴∠BAD=∠ADB-∠B,
=90°-30°,
=60°.
解:∵△ABC中,∠B=∠C=30°,
∴AB=AC,
∵D是BC的中点,
∴AD⊥BC,
∴∠ADC=90°∠ADB=90°,
∴∠BAD=∠ADB-∠B,
=90°-30°,
=60°.
考点梳理
考点
分析
点评
等腰三角形的判定与性质.
因为∠B=∠C=30°,所以△ABC是等腰三角形,又因为D是BC的中点,所以AD⊥BC(三线合一)即∠ADC=90°,所以△ADB,△ADC是直角三角形,利用三角形内角和是180°求∠BAD=60°.
本题考查等腰三角形的判断方法:等角对等边和等腰三角形的一个重要性质:“三线合一”是一小型的综合题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.