试题
题目:
如图,已知AD为△ABC的高,∠B=2∠C,求证:CD=AB+BD.
答案
证明:在DC取点E,使DE=BD,连接AE,
∵AD为△ABC的高,
∴AD⊥BE,
∴AB=AE,
∴∠AEB=∠B,
又∵∠B=2∠C,
∴∠AEB=2∠C,
∵∠AEB=∠C+∠EAC,
∴∠C=∠EAC,
∴AE=EC=AB,
∵CD=DE+EC,BD=DE,
∴CD=AB+BD.
证明:在DC取点E,使DE=BD,连接AE,
∵AD为△ABC的高,
∴AD⊥BE,
∴AB=AE,
∴∠AEB=∠B,
又∵∠B=2∠C,
∴∠AEB=2∠C,
∵∠AEB=∠C+∠EAC,
∴∠C=∠EAC,
∴AE=EC=AB,
∵CD=DE+EC,BD=DE,
∴CD=AB+BD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰三角形的判定与性质.
在DC取点E,使DE=BD,连接AE,根据线段垂直平分线求出AB=AE,推出∠B=∠AEB=2∠C=∠C+∠EAC,推出∠C=∠EAC,推出AE=EC=AB,代入即可求出答案.
本题考查了线段垂直平分线性质,等腰三角形性质,三角形外角性质的应用,主要考查学生的推理能力.
证明题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图已知△ABC内,P、Q分别在BC,CA上,并且AP、BQ分别是∠BAC、∠ABC的平分线.
(1)若∠BAC=60°,∠ACB=40°,求证:BQ+AQ=AB+BP;
(2)若∠ACB=α时,其他条件不变,直接写出∠BAC=
180°-3α
180°-3α
时,仍有BQ+AQ=AB+BP.
如图所示,D、E是△ABC的BC边上的点,AD=AE,EB=DC
求证:(1)△ADC≌△AEB;
(2)试比较∠1与∠2的大小,并说明理由.
如图,梯形ABCD中,AD∥BC,AB=AD+BC,M为CD的中点,求∠AMB的度数.
如图,已知BD平分∠ABC,DE∥AB,∠ABC=70°,BE=3cm,求∠BDE的度数及DE的长度.