题目:

如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=
25
25
°,∠DEC=
115
115
°;点D从B向C运动时,∠BDA逐渐变
小
小
(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
答案
25
115
小
解:(1)∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°,
∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,
小;
(2)当DC=2时,△ABD≌△DCE,
理由:∵∠C=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,

∴∠ADB=∠DEC,
又∵AB=DC=2,
∴△ABD≌△DCE(AAS),
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,
理由:∵∠BDA=110°时,
∴∠ADC=70°,
∵∠C=40°,
∴∠DAC=70°,
∴△ADE的形状是等腰三角形;
∵当∠BDA的度数为80°时,
∴∠ADC=100°,
∵∠C=40°,
∴∠DAC=40°,
∴△ADE的形状是等腰三角形.