题目:

(2012·鄂尔多斯)某商场试销一种成本为每件60元的T恤,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)之间的函数图象如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若商场销售这种T恤获得利润为W(元),求出利润W(元)与销售单价x(元)之间的函数关系式;并求出当销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
答案
解:(1)由题意得:
,
解得:
,
故y与x之间的函数关系式为:y=-x+120,
∵成本为每件60元的T恤,销售单价不低于成本单价,且获利不得高于40%,
∴60≤x≤84;
(2)w=(x-60)(-x+120)=-x
2+180x-7200=-(x-90)
2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
故当x=84时,w=(84-60)×(120-84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.
解:(1)由题意得:
,
解得:
,
故y与x之间的函数关系式为:y=-x+120,
∵成本为每件60元的T恤,销售单价不低于成本单价,且获利不得高于40%,
∴60≤x≤84;
(2)w=(x-60)(-x+120)=-x
2+180x-7200=-(x-90)
2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
故当x=84时,w=(84-60)×(120-84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.