试题
题目:
(2010·鄂州)如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.
(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.
(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.
(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.
答案
解:(1)由题意得:
S=x×
24-x
3
=
-
1
3
x
2
+8x (0<x≤10)
(2)由S=
-
1
3
x
2
+8x=45,
解得;x
1
=15(舍去),x
2
=9,
∴x=9,AB=
24-x
3
=5,
又S=
-
1
3
x
2
+8x=
-
1
3
(x-12)
2
+48,0<x≤10,
∵当x≤10时,S随x的增大而增大,
∴当x=10米时,S最大,为
140
3
平方米>45平方米,
∴平行于院墙的一边长为10时,就能围成面积比45平方米更大的花圃.
(3)根据题意可得:
77-x
n+2
=
x
n+1
,
n=4;x=35
解:(1)由题意得:
S=x×
24-x
3
=
-
1
3
x
2
+8x (0<x≤10)
(2)由S=
-
1
3
x
2
+8x=45,
解得;x
1
=15(舍去),x
2
=9,
∴x=9,AB=
24-x
3
=5,
又S=
-
1
3
x
2
+8x=
-
1
3
(x-12)
2
+48,0<x≤10,
∵当x≤10时,S随x的增大而增大,
∴当x=10米时,S最大,为
140
3
平方米>45平方米,
∴平行于院墙的一边长为10时,就能围成面积比45平方米更大的花圃.
(3)根据题意可得:
77-x
n+2
=
x
n+1
,
n=4;x=35
考点梳理
考点
分析
点评
专题
二次函数的应用.
(1)根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围;
(2)令S=45,将其代入所求得的函数关系式里求得x,再算出AB的长.通过函数关系式求得S的最大值,得出能否围成面积比45平方米更大的花圃;
(3)根据等量关系“花圃的长=(n+1)×花圃的宽”写出符合题中条件的x,n.
本题考查了同学们列函数关系式并求解最值的能力,同时需要注意自变量的取值范围.
压轴题.
找相似题
(2011·梧州)2011年5月22日-29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-
1
4
x
2
+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是( )
(2011·宁波模拟)某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a元.
(1)试求a的值;
(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.
①根据图象提供的信息,求y与x之间的函数关系式;
②求年利润S(万元)与广告费x(万元)之间的函数关系式,并请回答广告费x(万元)在
什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?
(注:年利润S=年销售总额-成本费-广告费)
(2011·沙坪坝区模拟)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识,某企业采用技术革新,节能减排,今年前5个月二氧化碳排放量y(吨)与月份x(月)之间的关系如下表:
月份x(月)
1
2
3
4
5
…
二氧化碳排放量y(吨)
48
46
44
42
40
…
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y和x的变化规律,请写出y与x的函数关系式;
(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?
(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据:
51
=7.14
,
52
=7.21
,
53
=7.28
,
54
=7.35
)
(2011·泰安二模)一个涵洞成抛物线形,它的截面如图.现测得,当水面宽AB=1.6m时,涵洞顶点O与水面的距离为2.4m.ED离水面的高FC=1.5m,求涵洞ED宽是多少?是否会超过1m?(提示:设涵洞所成抛物线为y=ax
2
(a<0))
(2012·岱岳区二模)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-
1
20
x
2
+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m
2
,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)