题目:
(2008·随州)某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单位x(元/件)的关系满足下表所示的规律.
销售单价x(元/件) |
… |
60 |
65 |
70 |
80 |
85 |
… |
年销售量y(万件) |
… |
140 |
135 |
130 |
120 |
115 |
… |
(1)y与x之间的函数关系式是
,自变量x的取值范围为
;
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额-成本-投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元?
答案
解:由题意得:
(1)y=-x+200(40≤x≤180)
(2)当y<90,即-x+200<90时,x>110
W=(x-40)(-x+200)-2000
=-x
2+240x-10000
当y≥90,即-x+200≥90时,x≤110
W=(x-38)(-x+200)-2000
=-x
2+238x-9600
∴
W= | -x2+240x-10000(110<x≤180) | -x2+238x-9600(38≤x≤110) |
| |
(3)当110<x≤180时,由W=-x
2+240x-10000=-(x-120)
2+4400得W
最大=4400
当38≤x≤110时,W=-x
2+238x-9600,
∴该函数图象是抛物线的一部分,该抛物线开口向下,它的对称轴是直线x=119,在对称轴左侧W随x的增大而增大.
∴当x=110,W最大=(110-38)×(-110+200)-2000=72×90-2000=4480
答:当销售单位定为110元时,年获利润最大,最大利润为4480万元.