题目:

某体育用品商店购进一种品牌的篮球,每一个篮球的进价为40元,经市场调查,每月售出篮球的数量y(个)与销售单价x(元)的函数关系的图象如图所示.
(1)若该体育用品商店每月既能售出篮球又不亏本的条件下,请你直接写出月销售量y(个)与销售单价x(元)的函数关系式,并写出x的取值范围;
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请你求出月销售利润w的最大值,此时篮球的售价应定为多少元?
答案
解:(1)设月销售量y(个)与销售单价x(元)的函数关系式y=kx+b,
根据图象可知直线经过点(50,500),(70,300),则
解得:
故y=-10x+1000,x的取值范围是40≤x<100.
(2)w=(x-40)(-10x+1000)
=-10x
2+1400x-40000
=-10(x-70)
2+9000.…(5分)
当x=70时,w取得最大值,w的最大值=9000.…(6分)
答:8000元不是每月销售这种篮球的最大利润,最大利润是9000元,此时篮球售价为70元.…(7分)
解:(1)设月销售量y(个)与销售单价x(元)的函数关系式y=kx+b,
根据图象可知直线经过点(50,500),(70,300),则
解得:
故y=-10x+1000,x的取值范围是40≤x<100.
(2)w=(x-40)(-10x+1000)
=-10x
2+1400x-40000
=-10(x-70)
2+9000.…(5分)
当x=70时,w取得最大值,w的最大值=9000.…(6分)
答:8000元不是每月销售这种篮球的最大利润,最大利润是9000元,此时篮球售价为70元.…(7分)