试题

题目:
青果学院如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连接BD和AE.
求证:AE=BD.
答案
证明:∵△ABC和△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACE=∠ACD+∠ACB,∠BCD=∠DCE+∠DCA,
∴∠ACE=∠BCD,
∴△BCD≌△ACE(SAS),
∴AE=BD.
证明:∵△ABC和△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACE=∠ACD+∠ACB,∠BCD=∠DCE+∠DCA,
∴∠ACE=∠BCD,
∴△BCD≌△ACE(SAS),
∴AE=BD.
考点梳理
等边三角形的性质;全等三角形的判定与性质.
根据等边三角形边长相等的性质和各内角为60°的性质可求得△BCD≌△ACE,根据全等三角形对应边相等的性质即可求得AE=BD.
本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各内角为60°、各边长相等的性质,本题中求证△BCD≌△ACE是解题的关键.
证明题.
找相似题