试题
题目:
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
答案
证明:∵AB∥CD,
∴∠B=∠D(两直线平行,内错角相等);
∴在△ABE和△CDF中,
∠A=∠C(已知)
AB=CD(已知)
∠B=∠D
,
∴△ABE≌△CDF(ASA),
∴AE=CF(全等三角形的对应边相等).
证明:∵AB∥CD,
∴∠B=∠D(两直线平行,内错角相等);
∴在△ABE和△CDF中,
∠A=∠C(已知)
AB=CD(已知)
∠B=∠D
,
∴△ABE≌△CDF(ASA),
∴AE=CF(全等三角形的对应边相等).
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
通过全等三角形的判定定理ASA判定△ABE≌△CDF,然后由全等三角形的对应边相等推知AE=CF.
本题考查了全等三角形的判定与性质.SSS、SAS、ASA、AAS、HL均为判定三角形全等的定理.
证明题.
找相似题
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.
(2009·西城区二模)△ABC是等边三角形,P为平面内一个动点,BP=BA,若0°<∠PBC<180°,且∠PBC的平分线上一点D满足DB=DA,
(1)当BP和BA重合时(如图1),∠BPD=
30°
30°
;
(2)当BP在∠ABC内部时(如图2),求∠BPD;
(3)当BP在∠ABC外部时,请直接写出∠BPD,并画出相应的图形.