试题

题目:
青果学院(2005·黄石)已知:如图,AD=BC,∠D=∠C,AC交BD于点E.求证:AC=BD.
答案
证明:在△ADE和△BCE中,
∠D=∠C
∠AED=∠BEC
AD=BC

∴△ADE≌△BCE(AAS).
∴AE=BE,DE=CE.
∴AE+EC=BE+DE.
∴AC=BD.
证明:在△ADE和△BCE中,
∠D=∠C
∠AED=∠BEC
AD=BC

∴△ADE≌△BCE(AAS).
∴AE=BE,DE=CE.
∴AE+EC=BE+DE.
∴AC=BD.
考点梳理
全等三角形的判定与性质.
由已知条件和全等三角形的判定,很容易证出△ADE≌△BCE,再由全等三角形的对应边相等即可求解.
本题考查了全等三角形的判定及性质;全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.
证明题.
找相似题