试题
题目:
(2002·徐州)已知,如图,∠CAB=∠DBA,AC=BD,AD交BC于点O.
求证:(1)△CAB≌△DBA;(2)OC=OD.
答案
证明:(1)∵AC=BD,∠CAB=∠DBA,AB=BA,
∴△CAB≌△DBA;
(2)∵△CAB≌△DBA,
∴∠C=∠D.
又∵∠COA=∠DOB,AC=BD,
∴△COA≌△DOB.
∴OC=OD.
证明:(1)∵AC=BD,∠CAB=∠DBA,AB=BA,
∴△CAB≌△DBA;
(2)∵△CAB≌△DBA,
∴∠C=∠D.
又∵∠COA=∠DOB,AC=BD,
∴△COA≌△DOB.
∴OC=OD.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)因为∠CAB=∠DBA,AC=BD,AB是公共边,所以可根据SAS判定△CAB≌△DBA;
(2)因为△CAB≌△DBA,则有∠C=∠D,又因为∠COA=∠DOB,AC=BD,根据ASA易证△COA≌△DOB,故OC=OD.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.