题目:
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,猜想线段DE、AD与BE有怎样的数量关系?请写出这个关系(不用证明);
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
答案
(1)解:DE=CD+CE=AD+BE.
(2)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∵AD⊥DN,∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,
DE=CE-CD=AD-BE.
(3)解:DE=CD-CE=BE-AD.
证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∵AD⊥DN,∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,
DE=CD-CE=BE-AD.
(1)解:DE=CD+CE=AD+BE.
(2)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∵AD⊥DN,∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,
DE=CE-CD=AD-BE.
(3)解:DE=CD-CE=BE-AD.
证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∵AD⊥DN,∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,
DE=CD-CE=BE-AD.