试题
题目:
如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.试猜想线段AD与AG的数量及位置关系,并证明你的猜想.
答案
解:AG=AD,AG⊥AD
理由:∵BE、CF分别是AC、AB两边上的高,
∴∠AFC=∠BFC=∠BEC=∠BEA=90°
∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,
∴∠ABE=∠ACF.
在△ABD和△GCA中,
BD=AC
∠ABE=∠ACF
AB=CG
,
∴△ABD≌△GCA(SAS),
∴AD=GA,∠BAD=∠G,
∴∠BAD+∠GAF=90°,
∴AG⊥AD.
解:AG=AD,AG⊥AD
理由:∵BE、CF分别是AC、AB两边上的高,
∴∠AFC=∠BFC=∠BEC=∠BEA=90°
∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,
∴∠ABE=∠ACF.
在△ABD和△GCA中,
BD=AC
∠ABE=∠ACF
AB=CG
,
∴△ABD≌△GCA(SAS),
∴AD=GA,∠BAD=∠G,
∴∠BAD+∠GAF=90°,
∴AG⊥AD.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD=GA,∠BAD=∠G,就可以得出∠GAD=90°,进而得出AG=AD,AG⊥AD.
本题考查了垂直的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.