试题
题目:
(2012·东莞模拟)如图是某商家设计的钻石商标,△ABC是等边三角形,四边形ACDE是等腰梯形,AC∥ED,求证:BE=BD.
答案
证明:∵△ABC是等边三角形,
∴AB=BC,∠BAC=∠BCA=60°,
∵四边形ACDE是等腰梯形,AC∥ED,
∴AE=CD,∠ACD=∠CAE,
∴∠BAC+∠CAE=∠BCA+∠ACD,
即∠BAE=∠BCD,
在△ABE和△BCD中,
AB=CB
∠BAE=∠BCD
AE=CD
,
∴△ABE≌△CBD(SAS),
∴BE=BD.
证明:∵△ABC是等边三角形,
∴AB=BC,∠BAC=∠BCA=60°,
∵四边形ACDE是等腰梯形,AC∥ED,
∴AE=CD,∠ACD=∠CAE,
∴∠BAC+∠CAE=∠BCA+∠ACD,
即∠BAE=∠BCD,
在△ABE和△BCD中,
AB=CB
∠BAE=∠BCD
AE=CD
,
∴△ABE≌△CBD(SAS),
∴BE=BD.
考点梳理
考点
分析
点评
专题
等腰梯形的性质;全等三角形的判定与性质;等边三角形的性质.
由△ABC是等边三角形,四边形ACDE是等腰梯形,易证得AB=CB,AE=CD,∠BAE=∠BCD,则可利用SAS证得△ABE≌△CBD,然后由全等三角形的性质,证得BE=BD.
此题考查了等腰梯形的性质、等边三角形的性质以及全等三角形的判定与性质.此题难度不大,注意数形结合思想的应用,注意证得△ABE≌△CBD是解此题的关键.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.