试题
题目:
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
答案
(1)证明:∵DA平分∠BAC,
∴∠FAG=∠CAG,
∵BD⊥AD,CF∥BD,
∴CF⊥AD,
∴∠AGF=∠AGC=90°,
在△AFG和△ACG中,
∵∠FAG=∠CAG,AG=AG,∠AGF=∠AGC,
∴△AFG≌△ACG.
(2)解:∵△AFG≌△ACG,
∴AC=AF,CG=FG.
∵CF∥BD,
∴△AFG∽△ABD,
∴
FG
BD
=
AF
AB
=
AC
AB
=
1
3
;
(3)解:∵CF∥BD,
∴△ECG∽△EBD,
∴
EG
ED
=
CG
BD
=
FG
BD
=
1
3
;
(4)解:AE=DE.
理由:设EG=x,则ED=3x.
AG
AD
=
AG
AG+4x
=
1
3
.
解得 AG=2x.
∴AE=3x=DE.
(1)证明:∵DA平分∠BAC,
∴∠FAG=∠CAG,
∵BD⊥AD,CF∥BD,
∴CF⊥AD,
∴∠AGF=∠AGC=90°,
在△AFG和△ACG中,
∵∠FAG=∠CAG,AG=AG,∠AGF=∠AGC,
∴△AFG≌△ACG.
(2)解:∵△AFG≌△ACG,
∴AC=AF,CG=FG.
∵CF∥BD,
∴△AFG∽△ABD,
∴
FG
BD
=
AF
AB
=
AC
AB
=
1
3
;
(3)解:∵CF∥BD,
∴△ECG∽△EBD,
∴
EG
ED
=
CG
BD
=
FG
BD
=
1
3
;
(4)解:AE=DE.
理由:设EG=x,则ED=3x.
AG
AD
=
AG
AG+4x
=
1
3
.
解得 AG=2x.
∴AE=3x=DE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据ASA证明△ACG≌△AFG;
(2)根据CF∥BD可证△AFG∽△ABD,运用相似三角形性质求解;
(3)可证△ECG∽△EBD,得EG:ED=CG:BD=FG:BD;
(4)综合运用上面结论可判定AE=DE.
此题考查相似(包括全等)三角形的判定和性质,综合性较强,难度较大.
几何综合题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.