答案
证明:∵CD⊥AB,
∴∠BDC=∠CDA=90°;
∵∠ABC=45°,
∴∠DCB=∠ABC=45°(三角形的内角和定理),
∴DB=DC(等角对等边);
∵BE⊥AC,
∴∠AEB=90°,
∴∠A+∠ABE=90°(直角三角形的两个锐角互为余角);
∵∠CDA=90°,
∴∠A+∠ACD=90°,
∴∠ABE=∠ACD(同角的余角相等);
在△BDF和△CDA中,
,
∴△BDF≌△CDA(ASA),
∴BF=AC(全等三角形的对应边相等).
证明:∵CD⊥AB,
∴∠BDC=∠CDA=90°;
∵∠ABC=45°,
∴∠DCB=∠ABC=45°(三角形的内角和定理),
∴DB=DC(等角对等边);
∵BE⊥AC,
∴∠AEB=90°,
∴∠A+∠ABE=90°(直角三角形的两个锐角互为余角);
∵∠CDA=90°,
∴∠A+∠ACD=90°,
∴∠ABE=∠ACD(同角的余角相等);
在△BDF和△CDA中,
,
∴△BDF≌△CDA(ASA),
∴BF=AC(全等三角形的对应边相等).