试题
题目:
(2011·宝安区二模)如图,梯形ABCD中,AB∥CD,∠DAB=90°,F是BC的中点,连接DF并延长DF交AB于点E,连接AF.
(1)求证:△CDF≌△BEF;
(2)若∠E=28°,求∠AFD的度数.
答案
(1)证明:∵AB∥CD,
∴∠B=∠C,
又∵∠CFD=∠BFE,CF=FB,
∴△CDF≌△BEF;
(2)解:过F作FH平行于DC,
AF是RT△ADE的中线,
∴AF=FD=FE,
∴∠E=∠FAE=∠AFH=28°,
又∵∠E=∠EDC=∠DFC=28°,
∴∠AFD=∠AFH+∠DFH=56°.
(1)证明:∵AB∥CD,
∴∠B=∠C,
又∵∠CFD=∠BFE,CF=FB,
∴△CDF≌△BEF;
(2)解:过F作FH平行于DC,
AF是RT△ADE的中线,
∴AF=FD=FE,
∴∠E=∠FAE=∠AFH=28°,
又∵∠E=∠EDC=∠DFC=28°,
∴∠AFD=∠AFH+∠DFH=56°.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
(1)先得出∠B=∠C,然后根据ASA可很容易的证得△CDF≌△BEF.
(2)过F作FH平行于DC,根据直角三角形的性质可得AF=FD=FE,进而根据∠ADF=∠AFH+∠DFH可得出答案.
本题考查了梯形及直角三角形的知识,有一定的难度,解答本题的关键是根据题意得出AF=FE=FD.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.