试题
题目:
(2010·天桥区二模)已知,等腰直角三角形ABC中,∠C=90°,直线l过点C,过点A,B分别作l的垂线,垂足分别为E,F.
(1)观察图(1),你能发现EF、AE、BF三者之间的一种数量关系吗?请你将它写出来;
(2)在图(2)中,上面的关系成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(3)当直线l绕点C转到什么位置时EF=BF-AE?在图(3)中画出直线l及AE和BF(不必证明).
答案
解:(1)EF=AE+BF.(2分)
(2)成立;(3分)
证明:∵∠EAC+∠ACE=90°,∠ACE+∠BCE=90°,
∴∠EAC=∠FCB,
又∵∠AEC=∠CFB=90°,且AC=BC,
∴△AEC≌△CFB(AAS).(6分)
∴AE=CF,EC=FB.(7分)
∴EF=AE+BF.(8分)
(3)如右图.(9分)
解:(1)EF=AE+BF.(2分)
(2)成立;(3分)
证明:∵∠EAC+∠ACE=90°,∠ACE+∠BCE=90°,
∴∠EAC=∠FCB,
又∵∠AEC=∠CFB=90°,且AC=BC,
∴△AEC≌△CFB(AAS).(6分)
∴AE=CF,EC=FB.(7分)
∴EF=AE+BF.(8分)
(3)如右图.(9分)
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;等腰直角三角形.
(1)由题中条件可知ABFE是矩形,且AB∥EF,则∠EAC=∠ECA=∠CAB=45°,所以AE=EC;同理可得BF=FC,即可得EF=AE+BF;
(2)由AAS可以确定△AEC≌△CFB(AAS),得到AE=CF,EC=FB,即得
EF=AE+BF.
(3)当l绕点C转到AB之间位置时EF=BF-AE.
本题主要考查直角三角形全等的判定,先根据已知条件或求证的结论确定直角三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
探究型.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.