试题
题目:
如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC;
(3)AO⊥BE.
答案
证明:(1)∵△ABC是等边三角形,
∴AB=BC=AC,
∵BF⊥AC,
∴AF=FC,∠AFB=90°,
∴OA=OC,
∴∠COF=∠AOF
∵∠AFB=90°,AF=OF,
∴∠OAF=∠AOF=45°,
∴∠COF=45°,
∴∠AOC=90°=∠BOE,
∵∠EOC=∠EOC,
∴∠AOE=∠COB,
在△AOE和△COB中,
OE=OB
∠AOE=∠COB
OA=OC
,
∴△AOE≌△COB(SAS),
∴AE=BC=AB,
即AB=AE.
(2)设AE、BC交于M,
∵△AOE≌△COB,
∴∠CBO=∠AEO,
∵OB⊥OE,
∴∠BOE=90°,
∴∠CBO+∠BNO=90°,
∵∠CBO=∠AEO,∠BNO=∠ENM,
∴∠AEO+∠ENM=90°,
∴∠EMN=180°-(∠AEO+∠ENM)=90°,
∴AE⊥BC.
(3)∵AB=AE,OB=OE,
∴A在BE垂直平分线上,O在BE垂直平分线上,
∴AO是BE的垂直平分线,
即AO⊥BE.
证明:(1)∵△ABC是等边三角形,
∴AB=BC=AC,
∵BF⊥AC,
∴AF=FC,∠AFB=90°,
∴OA=OC,
∴∠COF=∠AOF
∵∠AFB=90°,AF=OF,
∴∠OAF=∠AOF=45°,
∴∠COF=45°,
∴∠AOC=90°=∠BOE,
∵∠EOC=∠EOC,
∴∠AOE=∠COB,
在△AOE和△COB中,
OE=OB
∠AOE=∠COB
OA=OC
,
∴△AOE≌△COB(SAS),
∴AE=BC=AB,
即AB=AE.
(2)设AE、BC交于M,
∵△AOE≌△COB,
∴∠CBO=∠AEO,
∵OB⊥OE,
∴∠BOE=90°,
∴∠CBO+∠BNO=90°,
∵∠CBO=∠AEO,∠BNO=∠ENM,
∴∠AEO+∠ENM=90°,
∴∠EMN=180°-(∠AEO+∠ENM)=90°,
∴AE⊥BC.
(3)∵AB=AE,OB=OE,
∴A在BE垂直平分线上,O在BE垂直平分线上,
∴AO是BE的垂直平分线,
即AO⊥BE.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)连接OC,证△AOE≌△COB,推出AE=BC=AB.
(2)根据全等得出∠CBO=∠AEO,求出∠EMN=90°即可;
(3)根据线段垂直平分线性质得出AO是线段BE的垂直平分线,即可得出答案.
本题考查了线段垂直平分线,全等三角形的性质和判定,等腰直角三角形的性质的应用,主要考查学生的推理能力.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.