试题
题目:
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,
求证:AD是∠BAC的平分线.
答案
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,
∴∠BED=∠CFD,
∴△BDE与△CDE是直角三角形,
∵
BE=CF
BD=CD
,
∴Rt△BDE≌Rt△CDF,
∴DE=DF,
∴AD是∠BAC的平分线.
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,
∴∠BED=∠CFD,
∴△BDE与△CDE是直角三角形,
∵
BE=CF
BD=CD
,
∴Rt△BDE≌Rt△CDF,
∴DE=DF,
∴AD是∠BAC的平分线.
考点梳理
考点
分析
点评
专题
角平分线的性质;垂线;直角三角形全等的判定;全等三角形的判定与性质.
先根据全等三角形的判定定理得出Rt△BDE≌Rt△CDE,进而得出DE=DF,由角平分线的判定可知AD是∠BAC的平分线.
本题考查的是角平分线的判定及全等三角形的判定与性质,熟知到角的两边的距离相等的点在角的平分线上是解答此题的关键.
探究型.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.