试题
题目:
如图,△ABC中,AD为BC边上的高,点E在AC边上,BE交AD于点F,若BF=AC,FD=CD,
(1)你能在图中找出一对全等的三角形吗?请说出理由;
(2)判断BE与AC是否垂直,并说明理由.
答案
解:(1)△BDF≌△ADC,理由如下:
∵AD是BC边上的高
∴∠BDF=∠ADC=90°
∵BF=AC,FD=CD
∴Rt△BDF≌Rt△ADC;
(2)BE⊥AC理由如下:
∵△BDF≌△ADC
∴∠DBF=∠DAC
∵∠BFD=∠AFE
∴∠AEF=∠BDF=90°
∴BE⊥AC.
解:(1)△BDF≌△ADC,理由如下:
∵AD是BC边上的高
∴∠BDF=∠ADC=90°
∵BF=AC,FD=CD
∴Rt△BDF≌Rt△ADC;
(2)BE⊥AC理由如下:
∵△BDF≌△ADC
∴∠DBF=∠DAC
∵∠BFD=∠AFE
∴∠AEF=∠BDF=90°
∴BE⊥AC.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)由AD为BC边上的高且BF=AC,FD=DC,即可根据HL定理判定△BDF≌△ADC,所以能在图中找出一对全等的三角形;
(2)由(1)中分析可得出△BDF≌△ADC,所以∠DBF=∠DAC,又由∠BFD与∠AFE为对顶角,得出∠BFD=∠AFE,由此可判定△BDF∽△AEF,进而可得出BE与AC垂直的结论.
本题综合考查了三角形全等的判定方法,垂线的性质及三角形相似的判定等知识点,为基础题,扎实掌握相应的基础知识是解决这类问题的关键.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.