试题
题目:
已知,如图△ABC中,AB=AC,CD⊥AD于D,CD=
1
2
BC,D在△ABC外,求证:∠ACD=∠B.
答案
证明:过点A作AE⊥BC交BC于点E,
∴∠AEC=90°.
∵AB=AC,
∴BE=
1
2
BC.
∵CD=
1
2
BC,
∴BE=CD.
∵CD⊥AD,
∴∠D=90°.
在Rt△ABE和Rt△ACD中
AC=AC
BE=CD
,
∴Rt△ABE≌Rt△ACD(HL)
∴∠ACD=∠B.
证明:过点A作AE⊥BC交BC于点E,
∴∠AEC=90°.
∵AB=AC,
∴BE=
1
2
BC.
∵CD=
1
2
BC,
∴BE=CD.
∵CD⊥AD,
∴∠D=90°.
在Rt△ABE和Rt△ACD中
AC=AC
BE=CD
,
∴Rt△ABE≌Rt△ACD(HL)
∴∠ACD=∠B.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
作AE⊥BC于E,由等腰三角形的性质就可以得出BE=
1
2
BC,而得出BE=CD,进而得出△ABE≌△ACD就可以得出结论.
本题考查了等腰三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明△ABE≌△ACD是关键.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.