试题
题目:
如图,在四边形ABCD中,∠A=45°,∠C=90°,∠ABD=75°,∠DBC=30°,AB=2
2
.求BC的长.
答案
解:作BE⊥AD于E,
∴∠BEA=∠BED=90°.
∵∠A=45°,
∴∠ABE=45°.
∵∠ABD=75°,
∴∠EBD=30°.
∵∠DBC=30°,
∴∠DBE=∠DBC.
∵∠C=90°,
∴∠BED=∠C.
在△BDE和△BDC中,
∠BED=∠C
∠DBE=∠DBC
BD=BD
,
∴△BDE≌△BDC(AAS),
∴BE=BC.
在Rt△ABE中,AB=2
2
,由勾股定理,得
BE=2
∴BC=2.
答:BC=2.
解:作BE⊥AD于E,
∴∠BEA=∠BED=90°.
∵∠A=45°,
∴∠ABE=45°.
∵∠ABD=75°,
∴∠EBD=30°.
∵∠DBC=30°,
∴∠DBE=∠DBC.
∵∠C=90°,
∴∠BED=∠C.
在△BDE和△BDC中,
∠BED=∠C
∠DBE=∠DBC
BD=BD
,
∴△BDE≌△BDC(AAS),
∴BE=BC.
在Rt△ABE中,AB=2
2
,由勾股定理,得
BE=2
∴BC=2.
答:BC=2.
考点梳理
考点
分析
点评
全等三角形的判定与性质;角平分线的性质;等腰直角三角形.
作BE⊥AD于E,就可以得出△ABE为等腰直角三角形,由勾股定理就由求出BE的值,由△BDE≌△BDC就可以得出BC=BE得出结论.
本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.