试题
题目:
在△ABC中和△DBE中,∠ACB=∠DBC=90°,E是BC的中点,EF⊥AB于F,且AB=DE.
(1)观察并猜想,BD与BC有何数量关系?并证明你猜想的结论.
(2)若BD=8cm,试求AC的长.
答案
(1)BD=BC,
证明:∵EF⊥AB,
∴∠EFB=90°,
∵∠ACB=90°,
∴∠A+∠ABC=90°,∠FEB+∠ABC=90°,
∴∠A=∠FEB,
在△ACB和△EBD中
∵
∠A=∠DEB
∠ACB=∠DBC
AB=DE
,
∴△ACB≌△EBD(AAS),
∴BD=BC;
(2)解:∵由(1)知:△ACB≌△EBD,
∴BC=BD=8cm,BE=AC,
∵E为BC中点,
∴BE=
1
2
BC=4cm,即AC=4cm.
(1)BD=BC,
证明:∵EF⊥AB,
∴∠EFB=90°,
∵∠ACB=90°,
∴∠A+∠ABC=90°,∠FEB+∠ABC=90°,
∴∠A=∠FEB,
在△ACB和△EBD中
∵
∠A=∠DEB
∠ACB=∠DBC
AB=DE
,
∴△ACB≌△EBD(AAS),
∴BD=BC;
(2)解:∵由(1)知:△ACB≌△EBD,
∴BC=BD=8cm,BE=AC,
∵E为BC中点,
∴BE=
1
2
BC=4cm,即AC=4cm.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)根据三角形内角和定理求出∠A=∠DEB,根据AAS证△ACB≌△EBD,根据全等三角形性质推出即可;
(2)根据全等推出AC=BE,BC=BD=8cm,根据线段中点求出BE,即可求出AC.
本题考查了三角形的内角和定理,线段中点定义,全等三角形的性质和判定,主要考查学生综合运用性质进行推理和计算的能力,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.