试题

题目:
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.
(1)如图1,若∠DAB=60°,则∠AFG=
60°
60°
;如图2,若∠DAB=90°,则∠AFG=
45°
45°

(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;
(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)
青果学院
答案
60°

45°

(1)解:60°;45°…(2分)

(2)∠AFG=90°-
α
2
…(3分)
证明:连接AG.
∵∠DAB=∠CAE,∴∠DAC=∠BAE.青果学院
又AD=AB,AC=AE,
∴△DAC≌△BAE…(4分)
∴DC=BE,∠ADC=∠ABE.
又G、F为中点,
∴DG=BF,
∴△DAG≌△BAF…(5分)
∴∠DAG=∠BAF.
∴∠GAF=∠DAB=α,
∠AFG=90°-
α
2
…(6分)

(3)解:如图.青果学院
延长CN于H,使NH=MC,连接AH.
∵NC⊥BC,∠MAN=90°,
∴∠AMC+∠ANC=180°…(7分)
∵∠ANH+∠ANC=180°,
∴∠AMC=∠ANH…(8分)
在△AMC与△ANH中,
MC=NH
∠AMC=∠ANH
AM=AN

∴△AMC≌△ANH(SAS),
∴AC=AH,∠MAC=∠NAH…(9分)
∴∠HAC=∠MAN=90°.
∴∠ACH=45°,
∴∠ACB=45°…(10分)
考点梳理
全等三角形的判定与性质;等腰直角三角形.
(1)、(2)结合图3解决一般性问题:根据已知条件易证△ABE≌△ADC(SAS),得BE=CD,从而有BF=DG.连接AG,可证明△BAF≌△DAG,得∠GAF=∠DAB.根据等腰三角形性质及三角形内角和定理,已知∠DAB的度数,可求∠AFG的度数.
(3)依题意画图;延长CN于H,使NH=MC.构造出△ANH与△AMC全等,运用全等三角形性质,结合三角形内角和定理求解.
此题考查全等三角形的判定与性质,综合性强,难度大.
找相似题