试题
题目:
如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.
答案
证明:∵BD⊥AC,CE⊥AB,
∠CDF=∠BEF=90°,
在△CDF与△BEF中,
∠CDF=∠BEF=90°
∠CFD=∠BFE
CF=FB
,
∴△CDF≌△BEF(AAS),
∴DF=EF,
又∵BD⊥AC,CE⊥AB,
∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上).
证明:∵BD⊥AC,CE⊥AB,
∠CDF=∠BEF=90°,
在△CDF与△BEF中,
∠CDF=∠BEF=90°
∠CFD=∠BFE
CF=FB
,
∴△CDF≌△BEF(AAS),
∴DF=EF,
又∵BD⊥AC,CE⊥AB,
∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上).
考点梳理
考点
分析
点评
专题
角平分线的性质;全等三角形的判定与性质.
先证明△CDF与△BEF全等,根据全等三角形对应边相等可得DF=EF,再根据到角的两边距离相等的点在角的平分线上证明.
本题考查了全等三角形的判定与性质,角平分线的证明,熟记到角的两边距离相等的点在角的平分线上是解题的关键,难度不大,熟记性质定理即可证明.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.