试题

题目:
青果学院如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)求证:PD=DQ;
(2)若△ABC的边长为1,求DE的长.
答案
(1)证明:
如图,
青果学院
过P做PF∥BC交AC于点F,
∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,
∴∠A=∠AFP=60°,
∴△APF是等边三角形;
∵AP=PF,AP=CQ,
∴PF=CQ
∴△PFD≌△QCD,
∴PD=DQ.

(2)△APF是等边三角形,
∵PE⊥AC,
∴AE=EF,
△PFD≌△QCD,
∴CD=DF,
DE=EF+DF=
1
2
AC,
∵AC=1,
DE=
1
2

(1)证明:
如图,
青果学院
过P做PF∥BC交AC于点F,
∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD
∵△ABC为等边三角形,
∴∠A=∠ACB=60°,
∴∠A=∠AFP=60°,
∴△APF是等边三角形;
∵AP=PF,AP=CQ,
∴PF=CQ
∴△PFD≌△QCD,
∴PD=DQ.

(2)△APF是等边三角形,
∵PE⊥AC,
∴AE=EF,
△PFD≌△QCD,
∴CD=DF,
DE=EF+DF=
1
2
AC,
∵AC=1,
DE=
1
2
考点梳理
等边三角形的判定与性质;全等三角形的判定与性质.
(1)过P做BC的平行线至AC于F,易证△APF是等边三角形,再证明△PFD与△QCD全等,得出结论;
(2)利用△APF是等边三角形,PE⊥AC,得出AE=EF,再由△PFD≌△QCD,得出CD=DF,由此得出DE与AC的关系解决问题.
此题综合考查等边三角形的性质、三线合一以及三角形全等的判定与性质等知识点.
找相似题