全等三角形的判定与性质.
在AC上截取AE=AB,连接DE,由AD为角平分线,得到一对角相等,再由AD为公共边,利用SAS可得出三角形AED与三角形ABD全等,利用全等三角形的对应边相等可得ED=BD,由全等三角形的对应角相等可得∠AED=∠B,由∠B=2∠C,等量代换得到∠AED=2∠C,又∠AED为三角形ECD的外角,根据外角的性质得到∠AED等于两角之和,可得出∠C=∠EDC,根据等角对等边可得出EC=DE,等量代换得到EC=BD,由AC=AE+EC,等量代换可得证.
此题考查了全等三角形的判定与性质,三角形的外角性质,以及等腰三角形的判定与性质,利用了等量代换的思想,其中全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角相等等隐含条件的运用.
证明题.