试题
题目:
如图,在梯形ABCD中,AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.
(1)求证:CF=AD;
(2)若AD=3,AB=8,当BC=
5
5
时,点B在线段AF的垂直平分线上.
答案
5
(1)证明:∵AD∥BC,
∴∠F=∠DAE.(1分)
又∵∠FEC=∠AED,
∴∠ECF=∠ADE,
在△FEC与△AED中,
∠FEC=∠AED
CE=DE
∠ECF=∠ADE
,
∴△FEC≌△AED,
∴CF=AD.
(2)解:当BC=5时,点B在线段AF的垂直平分线上,
其理由是:∵BC=5,AD=3,AB=8,
∴AB=BC+AD,
又∵CF=AD,BC+CF=BF,
∴AB=BF,
∴△ABF是等腰三角形,
故可得点B在AF的垂直平分线上.
考点梳理
考点
分析
点评
梯形;全等三角形的判定与性质;线段垂直平分线的性质.
(1)通过求证△FEC≌△AED来证明CF=AD;
(2)若点B在线段AF的垂直平分线上,则应有AB=BF,又AB=8,CF=AD=3,BC=BF-CF.
本题考查了梯形的知识,利用了:(1)梯形的性质,(2)全等三角形的判定和性质,(3)中垂线的性质,难度一般.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.