试题
题目:
如图,△ACD和△ABE都是等腰直角三角形,∠DAC和∠EAB是直角,连接CE.
(1)在图上画出△ACE以点A为旋转中心,顺时针旋转90°后得到的△AC'E'(只需作出图形;不写画法);
(2)猜想EC与C'E'的位置有什么关系,并证明你的结论.
答案
解:(1)所画图形如下所示:
(2)由旋转的性质可知:△AEC≌△AE′C′,
∴∠AEC=∠AE′C′,
又∠AEC+∠CEE′+∠AE′E=90°,
∴∠AE′C′+∠CEE′+∠AE′E=90°,
∴∠EOE′=90°,
∴EC⊥C'E'.
解:(1)所画图形如下所示:
(2)由旋转的性质可知:△AEC≌△AE′C′,
∴∠AEC=∠AE′C′,
又∠AEC+∠CEE′+∠AE′E=90°,
∴∠AE′C′+∠CEE′+∠AE′E=90°,
∴∠EOE′=90°,
∴EC⊥C'E'.
考点梳理
考点
分析
点评
专题
作图-旋转变换;全等三角形的判定与性质.
(1)根据旋转角度、旋转方向、旋转点找出各点的对应点,顺次连接即可得出;
(2)由旋转的性质可知:△AEC≌△AE′C′,故∠AEC=∠AE′C′,又∠AEC+∠CEE′+∠AE′E=90°,可得∠AE′C′+∠CEE′+∠AE′E=90°,继而可得∠EOE′=90°,从而得出EC与C'E'的位置关系.
本题主要考查的是旋转变换的作图方法,在旋转作图时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.
作图题;证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.