试题
题目:
如图,△ABC中,D是BC的中点,过点D的直线MN交AC于N,交AC的平行线BM于M,PD⊥MN
,交AB于点P,连接PM、PN.
(1)求证:BM=CN;
(2)请你判断BP+CN与PN的在数量上有何关系,并说明你的理由.
答案
(1)证明:∵D是BC中点,
∴BD=CD.
∵AC∥BM,
∴∠MBD=∠NCD.
又∠BDM=∠CDN,
∴△BDM≌△CDN(ASA).
∴BM=CN.
(2)解:BP+CN>PN.
证明:∵△BDM≌△CDN,
∴MD=ND.
∵PD⊥MN,
∴PM=PN.
在△BMP中,BP+BM>PM,
∵BM=CN,PM=PN,
∴BP+CN>PN.
(1)证明:∵D是BC中点,
∴BD=CD.
∵AC∥BM,
∴∠MBD=∠NCD.
又∠BDM=∠CDN,
∴△BDM≌△CDN(ASA).
∴BM=CN.
(2)解:BP+CN>PN.
证明:∵△BDM≌△CDN,
∴MD=ND.
∵PD⊥MN,
∴PM=PN.
在△BMP中,BP+BM>PM,
∵BM=CN,PM=PN,
∴BP+CN>PN.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据已知条件容易证明△BDM≌△CDN,利用全等三角形的性质就可以解决问题;
(2)根据(1)知道MD=ND,CN=BM,而PD⊥MN,容易得到PM=PN,再根据三角形的三边的关系可以证明题目的结论.
本题考查了三角形全等的判定及性质;此题把全等三角形的判定与性质和三角形的三边的关系结合起来,综合利用它们解决题目的问题.
证明题;探究型.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.