试题
题目:
如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.
答案
证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°.
∵AD平分∠EAC,
∴DE=DF.
在Rt△DBE和Rt△DCF中,
DE=DF
BD=CD
∴Rt△DBE≌Rt△CDF(HL).
∴BE=CF.
证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°.
∵AD平分∠EAC,
∴DE=DF.
在Rt△DBE和Rt△DCF中,
DE=DF
BD=CD
∴Rt△DBE≌Rt△CDF(HL).
∴BE=CF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据角平分线的性质可得到DE=DF,由已知可得∠E=∠DFC=90°,从而可利用HL来判定Rt△DBE≌Rt△CDF,由全等三角形的性质即可得到BE=CF.
本题考查了三角形全等的判定及性质;做题时利用了角平分线的性质,得到线段相等,这也是解决本题的关键.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.