试题

题目:
青果学院如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13.点P从点A出发以每秒2个单位长度的速度沿AD→DC向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向A运动.当点P到达终点,运动即结束.设运动时间为t秒.
(1)梯形ABCD的面积是
40
40

(2)若四边形PQBC恰好是直角梯形,求此时t的值.
答案
40

青果学院解:(1)过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,
∵AB∥DC,
∴四边形ABCD是矩形,
∴EF=CD=7,DE=CF,
在Rt△ADE和Rt△BCF中,
AD=BC
DE=CF

∴Rt△ADE≌Rt△BCF(HL),
∴AE=BF=
AB-CD
2
=
13-7
2
=3,
∴DE=
AD2-AE2
=4,
∴S梯形ABCD=
1
2
(AB+CD)·DE=
1
2
×(7+13)×4=40;
故答案为:40;

(2)∵四边形PQBC恰好是直角梯形,
∴四边形PQFC是矩形,
∴PC=QF,
∴CP=5+7-2t,QF=t-3,
∴12-2t=t-3,
解得:t=5,
即四边形PQBC恰好是直角梯形,此时t=5.
考点梳理
等腰梯形的性质;全等三角形的判定与性质;直角梯形.
(1)首先过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,易得四边形ABCD是矩形,Rt△ADE≌Rt△BCF,则可求得AE与BF的长,然后由勾股定理求得DE的长,则可求得梯形ABCD的面积;
(2)由四边形PQBC恰好是直角梯形,四边形PQFC是矩形,则可得方程12-2t=t-3,继而求得答案.
此题考查了等腰梯形的性质、勾股定理、全等三角形的判定与性质以及矩形的性质与判定.此题难度适中,注意掌握方程思想与数形结合思想的应用.
找相似题