试题

题目:
如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,使角的两边分别交AB、AC边于M、N两点,连接MN.
①当MN∥BC时,求证:MN=BM+CN;
②当MN与BC不平行时,则①中的结论还成立吗?为什么?
③若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图③中画出图形,并说明理由.
青果学院
答案
证明:①∵△ABC是正三角形,MN∥BC,
∴△AMN是等边三角形,
∴AM=AN,
则BM=NC,
∵△BDC是顶角∠BDC=120°的等腰三角形,
∴∠DBC=∠DCB=30°,
∴∠DBM=∠DCN=90°,
∵在△BDM和△CDN中,
BM=NC
∠MBD=∠DCN
BD=DC

∴△BDM≌△CDN(SAS),
∴DM=DN,∠BDM=∠CDN,
∵∠MDN=60°,
∴△DMN是等边三角形,∠BDM=∠CDN=30°,
∴NC=BM=
1
2
DM=
1
2
MN,
∴MN=MB+NC;

②成立青果学院.理由如下:
证明:延长AC至E,使CE=BM,连接DE,
∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,
∴∠BCD=30°,
∴∠ABD=∠ACD=90°,
即∠ABD=∠DCE=90°,
∵在Rt△DCE和Rt△DBM中,
BD=CD
BM=EC

∴Rt△DCE≌Rt△DBM(HL),
∴∠BDM=∠CDE,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE=60°
∴DM=DE(上面已经全等)
∵在△DMN和△DEN中
DM=DE
∠MDN=∠NDE
DN=DN

∴△DMN≌△DEN(SAS),
∴BM+CN=NM.

③MN=CN-BM
证明:在CA上截取CE=BM,
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,青果学院
∴∠BCD=∠CBD=30°,
∴∠MBD=∠ECD=90°,
又∵CE=BM,BD=CD,
∵在△BMD和△CED中,
CE=BM
∠MBD=∠DCE
BD=CD

∴△BMD≌△CED(SAS),
∴DE=DM,
∵在△MDN和△EDN中,
ND=ND
∠EDN=∠MDN
MD=ED

∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-BM.
证明:①∵△ABC是正三角形,MN∥BC,
∴△AMN是等边三角形,
∴AM=AN,
则BM=NC,
∵△BDC是顶角∠BDC=120°的等腰三角形,
∴∠DBC=∠DCB=30°,
∴∠DBM=∠DCN=90°,
∵在△BDM和△CDN中,
BM=NC
∠MBD=∠DCN
BD=DC

∴△BDM≌△CDN(SAS),
∴DM=DN,∠BDM=∠CDN,
∵∠MDN=60°,
∴△DMN是等边三角形,∠BDM=∠CDN=30°,
∴NC=BM=
1
2
DM=
1
2
MN,
∴MN=MB+NC;

②成立青果学院.理由如下:
证明:延长AC至E,使CE=BM,连接DE,
∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,
∴∠BCD=30°,
∴∠ABD=∠ACD=90°,
即∠ABD=∠DCE=90°,
∵在Rt△DCE和Rt△DBM中,
BD=CD
BM=EC

∴Rt△DCE≌Rt△DBM(HL),
∴∠BDM=∠CDE,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE=60°
∴DM=DE(上面已经全等)
∵在△DMN和△DEN中
DM=DE
∠MDN=∠NDE
DN=DN

∴△DMN≌△DEN(SAS),
∴BM+CN=NM.

③MN=CN-BM
证明:在CA上截取CE=BM,
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,青果学院
∴∠BCD=∠CBD=30°,
∴∠MBD=∠ECD=90°,
又∵CE=BM,BD=CD,
∵在△BMD和△CED中,
CE=BM
∠MBD=∠DCE
BD=CD

∴△BMD≌△CED(SAS),
∴DE=DM,
∵在△MDN和△EDN中,
ND=ND
∠EDN=∠MDN
MD=ED

∴△MDN≌△EDN(SAS),
∴MN=NE=NC-CE=NC-BM.
考点梳理
全等三角形的判定与性质;等边三角形的性质;旋转的性质.
①首先证明△BDM≌△CDN,进而得出△DMN是等边三角形,∠BDM=∠CDN=30°,NC=BM=
1
2
DM=
1
2
MN,即可得出答案;
②延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段MD=DE,再进一步证明△DMN≌△DEN,进而等量代换得到MN=BM+NC;
③按要求作出图形,BM、MN、NC之间的关系是MN=NC-BM,理由为:先证△BMD≌△CED,再证△MDN≌△EDN(SAS),即可得证.
此题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.
找相似题