试题
题目:
以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.
(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是
AM⊥DE
AM⊥DE
,线段AM与DE的数量关系是
DE=2AM
DE=2AM
;
(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<
θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
答案
AM⊥DE
DE=2AM
(1)ED=2AM,AM⊥ED;
证明:延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再延长MA交DE于H.
∴AC=BG,∠ABG+∠BAC=180°
又∵∠DAE+∠BAC=180°,
∴∠ABG=∠DAE.
再证:△DAE≌△ABG
∴DE=2AM,∠BAG=∠EDA.
延长MA交DE于H,
∵∠BAG+∠DAH=90°,
∴∠HDA+∠DAH=90°.
∴AM⊥ED.
(2)结论仍然成立.
证明:如图,延长CA至F,使FA=AC,FA交DE于点P,并连接BF.
∵DA⊥BA,EA⊥AF,
∴∠BAF=90°+∠DAF=∠EAD.
∵在△FAB和△EAD中,
FA=AE
∠BAF=∠EAD
BA=DA
∴△FAB≌△EAD(SAS)
∴BF=DE,∠F=∠AEN,
∴∠FPD+∠F=∠APE+∠AEN=90°.
∴FB⊥DE.
又∵CA=AF,CM=MB.
∴AM∥FB,且AM=
1
2
FB,
∴AM⊥DE,AM=
1
2
DE.
考点梳理
考点
分析
点评
专题
旋转的性质;全等三角形的判定与性质.
(1)ED=2AM,AM⊥ED.延长AM到G,使MG=AM,连BG,则ABGC是平行四边形,再结合已知条件可以证明△DAE≌△ABG,根据全等三角形的性质可以得到DE=2AM,∠BAG=∠EDA,再延长MG交DE于H,因为∠BAG+∠DAH=90°,所以∠HDA+∠DAH=90°这样就证明了AM⊥ED;
(2)延长CA至F,使FA=AC,FA交DE于点P,并连接BF,证出△FAB≌△EAD,利用相似三角形的性质得到BF=DE,∠F=∠AEN,从而证出∠FPD+∠F=∠APE+∠AEN=90°,得到FB⊥DE,根据AM∥FB,可得到AM=
1
2
FB.
本题考查了旋转的性质和相似三角形的性质,利用旋转不变性找到三角形全等的条件.此题综合性较强,要注意观察图象的特点.
证明题.
找相似题
如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.
求证:AE=CF.
如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.
如图,已知AC平分∠BAD,AB=AD,求证:∠1=∠2.
如图,AB、CD相交于点O,AC∥BD,OA=OB.求证:CO=DO.
(2009·丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
垂直
,线段CF、BD的数量关系为
相等
相等
;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.