等边三角形的性质;全等三角形的判定与性质.
(1)由于P,A重合,DP=DB,∠DBP=∠DPB,因为DB是∠PBC的平分线,因此,∠DBP=∠DPB=30°;
(2)本题可通过构建全等三角形来求解.连接CD,BP=BC,BD又是∠PBC的平分线,三角形PBD和三角形CBD中又有一公共边,因此两三角形全等,∠BPD=∠BCD,那么关键是求∠BCD的值,那么我们就要看∠BCD和∠ACB的关系了,可通过证明三角形ACD和BCD全等来得出,这两个三角形中,BD=AD,BC=AC,有一条公共边CD因此∠BCD=∠ACD=30°,那么就求出∠BPD的度数了;
(3)同(2)的证法完全一样,步骤有2个,一是得出∠BCD的度数,二是证明三角形BPD和BCD全等,同(2)完全一样.
(当∠BPD是钝角时,∠BPD=∠BCD=(360-60)÷2=150°,还是用的(2)中的三角形BPD,BCD全等,BCD,ACD全等)
本题考查了等边三角形的性质及全等三角形的判定与性质;通过全等三角形得出角相等是解题的关键.
动点型.