试题

题目:
青果学院如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要
n2-n+1
n2-n+1
个三角形.
答案
n2-n+1

解:观察可得,第1层三角形的个数为1,第2层三角形的个数为22-2+1=3,
第3层三角形的个数为32-3+1=7,
第四层图需要42-4+1=13个三角形
摆第五层图需要52-5+1=21.
那么摆第n层图需要n2-n+1个三角形.
故答案为:n2-n+1.
考点梳理
规律型:图形的变化类.
观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;…可得,每一层比上一层多的个数依次为2,4,6,…据此作答.
此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.
压轴题.
找相似题