试题
题目:
如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有7个,
第10幅图中共有
19
19
个.
答案
19
解:第1幅图中有1个,
第2幅图中有3个,
第3幅图中有5个,
第4幅图中有7个,
…
第n副图中有(2n-1)个,
所以第10幅图中共有:2×10-1=20-1=19.
故答案为:19.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
分别写出前几幅图中的菱形的个数,再根据后一副图比前一个副图多一个大菱形与一个小菱形共多2个菱形,写出第n副图的菱形的个数,代入数据n=10进行计算即可得解.
本题是对图形变化规律的考查,观察出后一幅图比前一幅图多两个菱形,从而找出规律得到第n副图的通式是解题的关键.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2如4如·黔东南州)观察下列图形它们是按一定的规律排列的,依照此规律,第2如w图形的“★”有( )
(2010·呼和浩特)在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7…照此规律,七层二叉树的结点总数为( )
(2009·黔南州)观察下列图形,并判断照此规律从左向右第2007个图形是( )