试题
题目:
将棱长相等的正方体按如图的形状摆放,从上往下依次为第一层、第二层、第三层、…,则第2011层正方体的个数为( )
A.2 021 055
B.2 023 066
C.4 046 132
D.2 011
答案
B
解:观察不难发现,第一层有1个正方体,
第二层有3个,3=1+2;
第三层有6个,6=1+2+3,
第四层有10个,10=1+2+3+4,
第五层有15个,15=1+2+3+4+5,
…,
第n层有:1+2+3+…+n=
1
2
n(n+1),
当n=2011时,
1
2
n(n+1)=
1
2
×2011×(2011+1)=2 023 066.
故选B.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
根据图形计算出前几层的正方体的个数,从而得到第n层的个数为1+2+3+…+n,再根据求和公式求出表达式,然后把n=2011代入进行计算即可得解.
本题是对图形变化规律的考查,仔细观察图形,得到各层的正方体的个数等于连续自然数的和,然后求出第n层的个数的表达式是解题的关键.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2如4如·黔东南州)观察下列图形它们是按一定的规律排列的,依照此规律,第2如w图形的“★”有( )
(2010·呼和浩特)在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7…照此规律,七层二叉树的结点总数为( )
(2009·黔南州)观察下列图形,并判断照此规律从左向右第2007个图形是( )