试题
题目:
已知一个等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).
当n=8时,共向外作出了
18
18
个小等边三角形;
当n=k时,共向外作出了
3k-6
3k-6
个小等边三角形(用含k的式子表示).
答案
18
3k-6
解:由第1个图形可知:n=3时,共向外作出了3(3-2)个三角形;
由第2个图形可知:n=4时,共向外作出了3(4-2)个三角形;
…
所以当n=8时,共向外作出了3(8-2)=18个三角形;
当n=k时,共向外作出了3(k-2)=(3k-6)个三角形;
故答案为:18,3k-6.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
根据前三个图形小等边三角形的个数,推出n=8时共向外作出了18个等边三角形,归纳总结出第k个图形即n=k时,共向外作出的小等边三角形的个数即可;
本题考查图形的变化类问题,重点考查学生会根据题意归纳总结出一般性的结论.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2如4如·黔东南州)观察下列图形它们是按一定的规律排列的,依照此规律,第2如w图形的“★”有( )
(2010·呼和浩特)在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7…照此规律,七层二叉树的结点总数为( )
(2009·黔南州)观察下列图形,并判断照此规律从左向右第2007个图形是( )