试题
题目:
(2005·陕西)⊙O和⊙O′的半径分别为R和R′,圆心距OO′=5,R=3,当0<R′<2时,⊙O和⊙O′的位置关系是( )
A.内含
B.外切
C.相交
D.外离
答案
D
解:∵当R=3,0<R′<2时,
∴3<R+R′<5,
∴两圆外离.
故选D.
考点梳理
考点
分析
点评
圆与圆的位置关系.
两圆的位置关系与数量之间的联系:(P表示圆心距,R,r分别表示两圆的半径)
外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.
本题主要考查两圆的位置关系与数量之间的联系.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·湘西州)已知⊙O
1
与⊙O
2
的半径分别为3cm和5cm,若圆心距O
1
O
2
=8cm,则⊙O
1
与⊙O
2
的位置关系是( )
(2013·攀枝花)已知⊙O
1
和⊙O
2
的半径分别是方程x
2
-4x+3=0的两根,且两圆的圆心距等于4,则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2013·兰州)⊙O
1
的半径为1cm,⊙O
2
的半径为4cm,圆心距O
1
O
2
=3cm,这两圆的位置关系是( )