试题
题目:
(2001·河南)如图,△ABC,∠A的平分线交BC于D,圆O过点A且与BC相切于D,AB、AC与分别相交于E,F,AD与EF相交于G,求证:AF·FC=GF·DC.
答案
证明:连接DF,
∵AD是△ABC的角平分线,BC是⊙O的切线,∠CDF=∠EFD=∠DAC=∠EAD,
∴EF∥BC.
∴∠C=∠AFE.
∴△AFG∽△DCF.
∴
AF
DC
=
GF
FC
,即AF·FC=GF·DC.
证明:连接DF,
∵AD是△ABC的角平分线,BC是⊙O的切线,∠CDF=∠EFD=∠DAC=∠EAD,
∴EF∥BC.
∴∠C=∠AFE.
∴△AFG∽△DCF.
∴
AF
DC
=
GF
FC
,即AF·FC=GF·DC.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;角平分线的性质;弦切角定理.
根据要证明的线段之间的关系,显然可以构造到三角形AFG和三角形DCF中,根据弦切角定理以及圆周角定理的推论发现∠FDC=∠EFD,则EF∥BC,得到∠AFE=∠C,根据两个角对应相等得到两个三角形相似,从而证明结论.
此类题一般首先能够把线段放到两个三角形中,熟练运用相似三角形的判定和性质.
证明题.
找相似题
(2011·台湾)如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?( )
(2004·深圳)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=( )
(2004·丽水)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是( )
(2002·佛山)如图,直线AB切⊙O于点A,割线BDC交⊙O于点D、C.若∠C=30°,∠B=20°,则∠ADC=( )
(2001·武汉)已知:⊙O的内接四边形ABCD中,AB是⊙O的直径,∠BCD=120°.过D点的切线PD与BA的延长线交于P点,则∠ADP的度数是( )